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Abstract: The concept of Metatron's Cube, which is rooted in Sacred Geometry for centuries, is believed to 

contain the projections of all Platonic Solids. While Metatron's Cube inherently manifests as a two-

dimensional geometric form, this study incorporates its three-dimensional counterpart delving into the 

relationship between this sacred symbol and the Platonic Solids. The primary objective is to ascertain the 

viability of constructing the five Platonic Solids exclusively through their Metatron's Cube projections by 

experimenting in the fields of descriptive geometry and geometry in general. 

The experimentation strategically emphasizes simplicity and feasibility, seeking to unveil potential 

methodologies for constructing these Platonic Solids via the projections engendered by Metatron's Cube. 

Through the establishment of a connection between theoretical frameworks and practical applications, the 

study aims to contribute valuable insights into alternative and probably easier and more accessible 

methods of constructing Platonic Solids, particularly within the context of architectural design. This 

research represents a valuable stride in enhancing our understanding of ancient geometric concepts and 

their potential applications in contemporary architectural practices.  

Key words: Metatron’s Cube, Platonic Solids, descriptive geometry, three-dimensional model 

construction 

 

1. INTRODUCTION 

 

According to Sacred Geometry, Metatron's Cube is 

considered a perfect geometrical form due to its 

symmetrical arrangement and intricate patterns. [1] From 

a purely geometric perspective, Metatron's Cube 

showcases principles of symmetry, proportion, and 

interconnectedness, making it an intriguing object of 

study for mathematicians and geometry enthusiasts. [2] 

[3] While Metatron's Cube is a two-dimensional 

representation, it contains the potential for constructing 

the three-dimensional Platonic solids utilizing its 

structure. Despite Sacred Geometry is considered an 

ancient science that explores and explains the 

geometrical forms, shapes, patterns, and fractals, it is 

more focused on symbolism and spiritual significance 

across various cultures and traditions. Correspondingly 

much remains uncharted and necessitates verification 

concerning the theory of geometry as a science. 

The main premise of this study posits that the three-

dimensional Metatron’s Cube contains all Platonic 

Solids. To substantiate or refute this hypothesis, an 

ancillary conjecture is proposed: that the two-

dimensional Metatron’s Cube encapsulates a projection 

of each Platonic Solid. 

 

2. METHODS 

 

The initial approach adopted in this study involved 

data collection, followed by their analysis. The collected 

information from literature and data was quite limited 

and insufficiently relevant, given that the Metatron’s 

Cube is more commonly examined from the perspectives 

of art, symbolism, and its effects on humans rather than 

from a geometrical standpoint. Each piece of information 

had to be verified and tested through experimentation.  

Based on the findings, two hypotheses were 

formulated at the beginning of the study, one primary 

and one secondary, some of which were confirmed while 

others were refuted in various instances. 

The primary focus of the study revolved around 

experimentation and independent search for clarification 

of the set hypotheses. This exploration was based on 

creating certain models: both the two-dimensional and 

three-dimensional representations of the Metatron’s 

Cube, as well as models of Platonic Solids and their 

mutual overlap. The construction of these models 

included the utilization of AutoCAD software. Three-

dimensional construction of Metatron’s Cube was 

challenging due to lack of literature connected to this 

topic. Through a synthesis of existing and newly 

acquired data, a cohesive framework was established to 

ultimately reach conclusions. 

 

3. METATRON’S CUBE  

 

Metatron's Cube as a two-dimensional geometric 

figure is composed of thirteen equal-sized circles which 

are symmetrically arranged. Each circle’s centre is 

connected to every other circle’s centre by straight lines, 

resulting in a complex network of interlocking shapes. 

[4] Three-dimensional Metatron’s Cube is geometric 

figure which is composed of seventeen equal-sized 

spheres connected to each other’s centres by straight 

lines.  

 

3.1 Construction of Metatron’s Cube in two 

dimensions 

 

Two-dimensional construction of Metatron’s Cube 

started with drawing an initial circle and afterwards 

drawing two belts of additional six circles each, later 

called the inner and the outer circles. The circles were 
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arranged to connect with one another, with their centres 

positioned along straight lines intersecting at a 60° angle 

at the centre of the initial circle. The inner belt of six 

circles is arranged so that the initial circle touches at 

points on intersecting straight lines at a 60° angle. The 

outer belt of six circles touches the inner belt at points 

along the intersecting lines at a 60° angle (Figure 1. left). 

The final step was to connect all the centres of the 

circles to each other by drawing straight lines (Figure 1. 

right). In this way two-dimensional construction of 

Metatron’s Cube was created. 

 

 
 

Figure 1 Construction of two-dimensional Metatron’s Cube.  

 

3.2 Construction of Metatron’s Cube in three 

dimensions 

 

 To facilitate the construction of the Metatron Cube, it 

was essential to create an auxiliary geometric figure 

known in Sacred Geometry as Merkaba. Different name 

for this geometric figure is stellated octahedron. This 

figure represents two tetrahedron intersecting each other 

perfectly. It also can be explained like two interlocking 

regular triangular based pyramids, which touches each 

other with bases and both tops are on different sides.  

 For creating Merkaba, three circles’ centres from 

outer belt of circles of two-dimensional model of 

Metatron’s Cube were used as a base of one tetrahedron 

with one apex facing upwards (Figure 2. left). Other 

three outer circles centres were used to create a base of 

the other tetrahedron with one apex facing downwards 

(Figure 2. right).  

 

 
 

Figure 2 Construction of two tetrahedrons. 

 

This two tetrahedrons were created using the same 

two-dimensional model of Metatron’s Cube (Figure 3. 

left). Afterward, one of the tetrahedrons was moved 

vertically to create symmetrical overlap. This step could 

be done in two different ways which resulted 

constructing the same shape. Either the tetrahedron 

which one apex is facing upwards was moved down 

vertically, or the tetrahedron with one apex is facing 

downwards was moved up vertically. It is important that 

this step is done in the way that the bases of both 

tetrahedrons intersect the edges of the other one at their 

midpoint (Figure 3. right). 

 

 
 

Figure 3 Construction of Merkaba using two tetrahedrons. 

 

By connecting the vertices of the Merkaba by straight 

lines, axes were obtained, forming a structure resembling 

a coordinate system. Within the Merkaba's centre, where 

the axes intersect, the initial sphere with the same 

diameter as the circles in two-dimensional model of 

Metatron’s Cube was placed. At each Merkaba vertex, a 

sphere of identical diameter to the central one was 

placed, resulting in the formation of the outer belt of 

eight spheres. (Figure 4. left).  Additionally, eight 

spheres were placed midway between the centre of the 

initial sphere and each of the centres of outer spheres 

(corresponding to each Merkaba’s vertex) all sharing the 

same diameter as the initial and outer-belt spheres. 

Therefore, the inner belt of eight spheres was formed. 

Ultimately, the centres of each sphere were 

interconnected, leading to the finalization of the three-

dimensional Metatron’s Cube (Figure 4. right). 

 

 
 

Figure 4 Construction of three-dimensional Metatron’s Cube 

utilizing the shape of Merkaba.  

 

 Following the creation of the three-dimensional 

model, it was determined that the angular distances 

between each of the established axes were approximately 

109.47° and 70.53°. Angles between these axes were 

measured using command “Measure” in AutoCAD 

software. Through simple observation, it was deduced 

that despite the circles touching within the two-

dimensional Metatron’s Cube, spheres of equivalent 

diameter within the three-dimensional Metatron’s Cube 

remained without common point of intersection. 

Furthermore, by aligning the perspective perpendicular to 

each axis, it was determined that the two-dimensional 

projection of the Metatron’s Cube is not merely the top 
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and bottom view of the three-dimensional model, but 

indeed represents a projection with a total of eight 

distinct sides.  

 

4. CONSTRUCTION OF EACH OF THE 

PLATONIC SOLIDS 

 

In following chapters, it was examined whether it is 

possible to construct each of the Platonic Solids using the 

Metatron’s Cube’s three-dimensional model directly or 

indirectly. For each of the Platonic Solids, the initial 

inquiry centered around determining if its projection was 

contained within the two-dimensional model of the 

Metatron’s Cube, establishing a criterion for its three-

dimensional construction. 

 

4.1 Tetrahedron 

 

A tetrahedron is a regular polyhedron consisting by 

four faces, each of which is an equilateral triangle. This 

Platonic Solid is defined by four vertices and six edges. 

[5] [6] Considering that the tetrahedron was needed to 

create the three-dimensional Metatron’s Cube, it was 

straightforward to conclude the feasibility of constructing 

a tetrahedron from the three-dimensional model of the 

Metatron’s Cube.  

Within the two-dimensional projection of the 

Metatron’s Cube, the equilateral triangle was clearly 

observed, which simultaneously represented one of the 

projections of the tetrahedron. This triangle was created 

by connecting the centres of every other circle from the 

outer belt of circles using equal-dimension straight lines. 

(Figure 5). The angle between these lines representing 

the sides of the triangle is 30°, which proves that the 

triangle is equilateral. 

 

 
 

Figure 5 Triangle as a projection of tetrahedron in two-

dimensional Metatron’s Cube 
 

Except the triangle, the other projection of 

tetrahedron was observed. This projection of a 

tetrahedron was formed by linking the centres of every 

other circle from the outer belt of circles using straight 

lines of equal dimensions, followed by the addition of 

three more straight lines connecting the centre of the 

initial circle with the three previously used centres of 

every other outer circle (Figure 6).  In accordance with 

this, it was concluded that there was a possibility of 

creating a three-dimensional model of this Platonic Solid.  

 

 
 

Figure 6 Projection of tetrahedron in two-dimensional 

Metatron’s Cube 
 

For constructing the three-dimensional model of the 

tetrahedron, three other outer spheres' centres were 

connected via straight lines, forming an equilateral 

triangle. Further, these centres were then connected to 

the centre of the furthest sphere, resulting in the 

formation of three more equilateral triangles. Through 

this process, the Platonic solid - the tetrahedron, was 

constructed (Figure 7). Within the three-dimensional 

Metatron's Cube, it was possible to construct a 

tetrahedron in two ways. The first method included 

creating the upper base by connecting the centres of three 

upper spheres from the outer belt of spheres, in the next 

step followed by connecting each of these centres to the 

centre of the lowest outer sphere (Figure 7. left). The 

second method is very similar and completely 

symmetrical. The lower base was created by connecting 

the centres of three lower spheres from the outer belt of 

spheres. In the final step, each of these centres were 

connected to centre of the uppermost outer sphere 

(Figure 7. right) 

 

 
 

Figure 7 Tetrahedron construction utilizing three-dimensional 

Metatron’s Cube  
 

4.2 Hexahedron (Cube) 

 

A hexahedron is a regular polyhedron consisting by 

six faces, each of which is a square. This Platonic Solid 

is defined by eight vertices and twelve edges. [5] [6]  

One of the projections of the hexahedron (Figure 8) is 

contained within the two-dimensional Metatron’s Cube. 

The initial step to construct this projection of hexahedron 

utilizing Metatron’s Cube was to create a hexagon 

through the connection of adjacent circle centres, which 

belong to the outer belt of circles. This step is followed 

by the linkage of every second outer circle centre to the 
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centre of the initial circle. Through this procedure, a 

projection of the hexahedron was formed. This 

observation led to the deduction that there is a potential 

for creating a three-dimensional model of this Platonic 

Solid. 

 

 
 

Figure 8 Projection of hexahedron in two-dimensional 

Metatron’s Cube 

 

Utilizing three-dimensional Metatron’s Cube, 

hexahedron was created in the following way. Each 

centre of the spheres in the outer belt was connected with 

precisely three adjacent centres of the outer belt spheres 

(Figure 9). From this, it can be concluded that the centres 

of all circles in the outer belt represent the vertices of the 

cube, while the axes belonging to the Metatron's Cube 

correspond to the diagonals of the hexahedron. 

 

 
 

Figure 9 Hexahedron construction utilizing three-dimensional 

Metatron’s Cube  
 

4.3 Octahedron 

 

An octahedron is a regular polyhedron consisting by 

six faces, each of which is an equilateral triangle. This 

Platonic Solid is defined by six vertices and twelve 

edges. [5] [6] 

 Within the two-dimensional Metatron’s Cube, two 

identical projections of the octahedron are observed, with 

one being larger and the other one smaller. The larger 

projection was obtained by connecting the centres of 

each of the circles from outer belt forming hexagon. 

Afterwards, the centres of every other outer circle were 

connected to one another, forming an equilateral triangle 

(Figure 8. left). The smaller projection is obtained 

following the same process but utilizing the inner circles. 

Centres of each of the circles from inner belt were 

connected forming hexagon. Afterwards, the centres of 

every other inner circle were connected to one another, 

forming an equilateral triangle (Figure 8. right).  

 

 
 

Figure 10 Projection of octahedron in two-dimensional 

Metatron’s Cube, on the left: larger one using outer belt of 

circles, on the right: smaller one using inner belt of circles  
 

Construction of the smaller octahedron, 

corresponding by size to the projection of the smaller 

octahedron within the Metatron’s Cube, can be explained 

in several different ways, but it always involves the exact 

same points located within the framework of the three-

dimensional Metatron's Cube (Figure 11).  

 

 
 

Figure 11 Smaller octahedron construction utilizing three-

dimensional Metatron’s Cube 
 

The most understandable way is that an octahedron 

was obtained as the intersection of two tetrahedrons 

created within the three-dimensional Metatron’s Cube. 

The midpoints of the edges of the tetrahedron 

represented the vertices of the octahedron. By connecting 

the midpoints of edges from these two tetrahedrons, the 

edges of the octahedron were formed. 

Another way to explain the construction of the 

octahedron is through the hexahedron already 

constructed within the Metatron's Cube. Specifically, 

each point located at the intersection of the diagonals of 

the hexahedron's faces represents one of the vertices of 

octahedron. When this points were connected, the 

octahedron was formed. 

 Constructing the larger octahedron proved unfeasible 

within the confines of the existing spheres of the three-

dimensional Metatron’s Cube, thus its construction 

required the addition of two more outer belts of spheres. 

By adding this, the extended version of Metatron’s Cube 

is formed. This construction of the larger octahedron can 
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be explained in several different ways, but it always 

involves the exact same points located within the 

framework of the expanded three-dimensional Metatron's 

Cube (Figure 12). 

 

 
 

Figure 12 Larger octahedron construction utilizing expanded 

three-dimensional Metatron’s Cube 

 

Within this expanded Metatron’s Cube, two larger 

tetrahedrons were formed using the last outer circles 

centres. Analogously to the construction of the smaller 

octahedron using two tetrahedrons from Metatron’s 

Cube, the larger octahedron was constructed using two 

tetrahedrons from expanded Metatron’s Cube.  

Within the expanded Metatron’s Cube, hexahedron 

was formed using the last outer circles centres. 

Analogously to the construction of the smaller 

octahedron using hexahedron from Metatron’s Cube, the 

larger octahedron was constructed using hexahedron 

from expanded Metatron’s Cube. 

 

4.4 Dodecahedron 

 

A dodecahedron is a regular polyhedron consisting by 

twelve faces, each of which is a pentagon. This Platonic 

Solid is defined by twenty vertices and thirty edges. [6] 

Initially, the projection of the dodecahedron appeared 

to be present within the two-dimensional Metatron’s 

Cube (Figure 13). Nevertheless, upon closer 

examination, it was determined that constructing this 

projection using points, lines, and circles as elements of 

the two-dimensional Metatron’s Cube is not possible. 

 

 
 

Figure 13 Dodecahedron look-alike shape in two-dimensional 

Metatron’s Cube 

 The mismatch observed between the dodecahedron-

like shape from the two-dimensional Metatron’s Cube 

and the actual projection of the dodecahedron is based on 

the proportions of the regular pentagon. Assuming the 

dimension of the regular pentagon illustrated in Figure 

14 is 1, its edge would measure 0.618... [7]  

 

 
 

Figure 14 Proportions of the regular pentagon 

 

When this measurement is applied to the accurate 

dodecahedron projection and scaled to a dimension of 1, 

the edge of the dodecahedron must be equal to 0.618... 

(Figure 15. right). Therewithal, when this measurement 

was applied to dodecahedron-like shape from the two-

dimensional Metatron’s Cube, the edge was equal to 0.5 

which directly indicated that this shape does not 

represent a properly and accurately constructed 

dodecahedron (Figure 15. left). These distances were 

directly measured in AutoCAD software. 

 

 
 

Figure 15 Differences between dodecahedron-like shape from 

Metatron’s Cube (left) and real dodecahedron projection (right) 

 

Based on the determination that it is impossible to 

construct the projection of a regular dodecahedron within 

the two-dimensional Metatron’s Cube, it was concluded 

that constructing a regular dodecahedron from the three-

dimensional Metatron’s Cube is likewise infeasible. 

 

4.5 Icosahedron 

 

An icosahedron is a regular polyhedron consisting by 

twenty faces, each of which is an equilateral triangle. 

This Platonic Solid is defined by twelve vertices and 

thirty edges. [6] 

At first, it seemed that the icosahedron's projection 

was observable within the two-dimensional Metatron’s 

Cube. Upon careful analysis, it was determined that this 

shape is not a real projection of icosahedron. The 

icosahedron look-alike shape made within two-

dimensional Metatron’s Cube consists of two equilateral 

triangles with one contained within the other, along with 

the linkage of the centres of the outer circles with each 

other, and the connection of the centres of three outer 

circles with those of the three inner circles. This shape 

created in the described manner failed to accurately 
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represent an icosahedron because the projection of an 

equilateral triangle from the side cannot be equal to that 

same equilateral triangle by its dimensions. According to 

this, the differences between icosahedron look-alike 

shape created from two-dimensional Metatron’s Cube 

and real icosahedron are obvious (Figure 16). 

 

 
 
Figure 16 Differences between icosahedron look-alike shape in 

two-dimensional Metatron’s Cube (left) and real icosahedron 

(right) 

 

Due to the impossibility of constructing at least one 

of the projections of the icosahedron within the two-

dimensional Metatron’s Cube, it was concluded that it is 

also impossible to construct icosahedron using the three-

dimensional model of the Metatron’s Cube. 

 

5. DISCUSSION 

 

This research led to significant findings and 

conclusions regarding the feasibility of constructing 

Platonic solids utilizing the Metatron’s Cube. While the 

hypothesis that all Platonic Solids can be constructed was 

supported for some solids, it was disproven for others. It 

was discovered that while three out of the five Platonic 

solids - namely the tetrahedron, hexahedron, and 

octahedron - can be constructed using projections found 

within the two-dimensional Metatron’s Cube, the 

dodecahedron and icosahedron do not have such 

projections, resulting that their construction within the 

Metatron’s Cube is impossible. 

These three Platonic solids, which have been 

established as constructible utilizing the Metatron's Cube, 

have a significant impact on architectural design. Figure 

17. represents great use of these solids in different 

architectural projects.  

 

   
 
Figure 17 Examples of applied Platonic solids in architecture: 

tetrahedron (left), hexahedron (middle) and octahedron (right) 

www.evolo.us www.designboom.com https://vereinkunzt.at/  

The application of tetrahedron, hexahedron and 

octahedron, but also the Metatron’s Cube in architecture 

is extensive. Their shapes can often be used for creation 

of exhibition pavilions, large modular structures, spatial 

grid structures, or even non-functional yet aesthetically 

valuable sculptures. 

 

6. CONCLUSIONS 

 

 Through exploring the spatial potential of the 

Metatron's Cube, it was concluded that it’s not easier and 

more accessible method for constructing Platonic Solids. 

This determination primarily stems from the inability to 

create more complex Platonic solids such as the 

dodecahedron and icosahedron, coupled with the 

existence of easier methods for constructing simpler 

Platonic solids like the tetrahedron, hexahedron, and 

octahedron. 

The paper provides space for further exploration into 

the application of the Metatron’s Cube, particularly its 

three-dimensional model, offering possibilities beyond 

constructing three of the Platonic Solids to potentially 

serving as a coordinate system for diverse structures in 

architecture. 
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