
JOURNAL OF INDUSTRIAL DESIGN AND ENGINEERING GRAPHICS 29

Abstract: This case study wishes to highlight the advantages of using a Windows based PC to control a DC

Motor for applications in small projects, the DC Motor being driven by an Arduino Uno board. Arduino

controllers represent the best method of interfacing electrical components with a computer after

programming either a Graphical User Interface or a Command Line Interface. The study will also show the

advantages of using Visual Studio to design a GUI Windows application to control the mentioned DC-Motor.

The purpose of this application is the future usage of the DC-Motor in more complex mechatronic projects.

The application can adapt to any type of motor as long as it is not a Stepper-Motor or Servo-Motor.

Keywords: Arduino, windows, design, programming, interface, software

1. INTRODUCTION

Since the invention of the transistor, important

advancements in hardware and software development

brought us to this moment, where interested users with

little experience in programming, or without any

electrical knowledge can create a revolutionary device.

People can control their smart home from their wrist,

while being at work overseas. We can imagine something

simpler, like wirelessly control a slowly-spinning one-

legged table from your phone or laptop at home, via

Bluetooth, so that all the guests in the house can reach a

particular dish. The table is rotated by a DC-Motor,

which is controlled by an Arduino Uno, which

communicates with the PC using a cheap Bluetooth

adapter. This information will be clarified in the

following study.

2. MAIN HARDWARE AND SOFTWARE

2.1 Arduino

Arduino represents an open-source electronics

platform based on easy-to-use hardware and software.

Open source products permit the user to freely use the

content of the product, the source code or the documents.

We can program Arduino boards with the company’s

own integrated development environment (which will be

referred in text as IDE), which is easy to use and it is

based on C++ programming language.

While there are many different types of Arduino

models, we chose the Uno R3 board for this study, for it

is widespread and easy to find (fig. 1). The

microcontroller ATmega328P is the perfect chip for this

project as it operates with 5 Volts, has 14 Digital and 6

Analog Pins [1].

2.2 What is Visual Studio?

Visual Studio is an IDE made by Microsoft. The

application has grown significantly over the years and

it’s uses include: Windows based applications, websites,

web-apps, web services and smartphone apps. Visual

Studio supports 36 different programming languages.

Built-in languages include C, C++, C++/CLI, Visual

Basic, .NET< C#, F#, JavaScript, TypeScript, XML,

XSLT, HTML and CSS [3].

The main advantage of Visual Studio is that the

programmer can see live updates in the IDE after

compiling, without having the need to exit the IDE and

run the application separately. As we can see in fig. 2,

the user can drag the contents of the window just by

dragging the mouse, while the program does all the

arrangements automatically. This tool is very useful to

create excellent software designs for products. After the

design is completed, the user must program each

element.

Another big point for Visual Studio is that the

baseline software “Visual Studio Community Edition” is

100% free, making it the perfect beginner’s IDE.

Theodor-Andrei POPESCU, Teodora COSTACHE

DESIGNING A WINDOWS PROGRAM FOR CONTROLLING DC-MOTORS USING

MICROSOFT VISUAL STUDIO AND ARDUINO IDE

Fig. 1 Arduino UNO R3 Mainboard [2]

Fig. 2 Visual Studio's Design Editor

Designing a Windows Program for Controlling DC-Motors Using Microsoft Visual Studio and Arduino IDE

VOLUME 14  ISSUE 2  DECEMBER 2019 30

The main disadvantage of Visual Studio is the fact

that the user interface can be pretty confusing at first and

will need some “getting used to”. The second main

disadvantage is the fact that while the development team

at Microsoft are pushing very frequent updates to the

IDE, it still has its share of crashes, especially when a

complex application it’s being programmed. Users

should always save after any significant changes to the

code – this being a general advice for all computer users.

3. PURPOSE AND DESIGN

It’s easy to imagine so many uses for this product.

In this study, to make it even simpler, we will present an

electrical assembly with a small, simple application. The

electric motor we chose for this study is 36.5 mm long

and with a body diameter of 21 mm, while its torque will

be no greater than 0.2 Nm. This DC-Motor, that will be

described from Chapter 3 and onwards, is already tested

in lab. In this case, if the reader wants to get practical and

build such an assembly, a more powerful motor will be

required so that it will support the greater mass of the

table. The rotation speed will be between 55 and 120

RPM. If lower speeds are required, a spur gear reducer

can be easily designed. The design created will be

theoretical with the DC-motor being a generic one.

The application for this contraption will be the slow-

spinning one-legged table that the introduction specifies.

mass of the table. The following 3D models are created

entirely in Autodesk Inventor.

The following reference round one-legged dining

table is designed for demonstrative purposes only (fig.

3). When designing anything, be it smart furniture or

other projects, please have a complete set of calculations.

The present study will focus more on designing the

Visual Studio platform, Arduino software and assemble

the electrical circuitry and not on creating a revolutionary

dining table. We are aware that in this particular

demonstration, the assembly might be too underpowered

to spin the whole table, but a more powerful DC-Motor

can be introduced for the assembly to work as stated.

Fig. 3 Referenced one-legged table modeled in Autodesk

Inventor

At first glance, the table looks ordinary. The top is

made of birch wood and the stand is made of a separate

material. The foot has rubber pads to prevent easy

falling, as seen in fig. 4.

Fig. 4 Rubber pads present on the table foot

If the reader pays attention, the holes present on the

bottom of the table stand reveal the fact that the whole

electric motor contraption is found inside of the table

stand. If we change the transparency of the table stand

the rotating shaft assembly is shown (fig. 5).

Fig. 5 Interior mobile shaft

If we zoom in, we will see the reducer assembly and

the electric DC-Motor fixated with a metallic sleeve, to

reduce vibrations.

Fig. 6 DC-Motor, Spur Gear Assembly

The red shafts hold the spur gears at the chosen

distance, used to reduce the speed of the electric motor

and multiply the torque applied to the mobile shaft. The

DC-Motor is light-gray in fig. 6. To pair the motor with

Designing a Windows Program for Controlling DC-Motors Using Microsoft Visual Studio and Arduino IDE

JOURNAL OF INDUSTRIAL DESIGN AND ENGINEERING GRAPHICS

the red shaft, a sleeve coupling is used; fig. 7 will show a

sectioned view of it.

Fig. 7 DC-Motor-Red Shaft Coupling

The following calculations have been made, to fit

the coupling on the shafts:

The spur gear assembly was created with Autodesk

Inventor’s generator. The following sketch represents the

reducer assembly (fig. 8):

Fig. 8 Reducer Assembly

The big spur gear can roll easily with the help of a

main shaft. The shaft is attached to the long rotating shaft

of the table (fig. 9).

Fig. 9 Big spur gear shaft

The shaft can rotate freely with the help of two ball

bearings.

For this example, the electronics box is placed

separately (fig. 10-11), but a future project may include

all components necessary to drive a DC-Motor by

Bluetooth in a single contraption, including an AC/DC

converter.

Fig. 10 Electronics Box

The electronics box will contain all the elements –

except the DC-Motor – that will be described in Chapter

3. As stated, we need a connection to 12VDC. The red

LED switch must be on before connecting to the table.

Fig. 11 Side-view of the electronics box

The design of the electronics box can easily

exchange heat thanks to the CNC cut cooling grills, and

can provide cable output for the motor without effort.

When the user turns on the switch, the serial port of

the Arduino becomes open, explained in detail at Chapter

4. Now he has to connect the USB Cable (that comes out

of the electronics box, through the motor output hole) to

his PC, or wirelessly connect via Bluetooth.

The rest is easy to imagine, get your laptop out,

click on START and get your favorite dishes closer, no

effort. As stated earlier, the spinning table is a brute

example, as the purpose of the study is to design the

Visual Studio application and program the Arduino code.

A very large number of practical approaches can be done

with the wirelessly controlled DC-Motor: smart garage

door opener (if no WiFi is present – otherwise this would

be controlled with already existing methods), changing

modular desk reach or height, medical care, mirror

control, raise an OLED Television from a hidden

position, electric curtains, etc.

Designing a Windows Program for Controlling DC-Motors Using Microsoft Visual Studio and Arduino IDE

VOLUME 14  ISSUE 2  DECEMBER 2019 32

4. ELECTRONIC ASSEMBLY

In the following figures we will show and explain

each component used for the electrical assembly. To

design and program the interface, we first need a

working prototype. For this study, we chose a 0.2 � ∗ �

HN-GH12-1632T-R 12V brushed DC-Motor with

included reducer, shown in fig. 12.

Fig. 12 DC-Motor used in present study [4]

To drive this motor, we need a strong electronic

driver. Initially we believed the L298N integrated circuit

will do the trick, but unfortunately the driver heats up so

much that even retailers sell it with a heatsink installed.

Also, the seller recommends using it for stepper motor

projects. The driver can be used for smaller motors with

currents under 2A, shown in fig. 13, with the referenced

link sending to a buy now page. Another advantage is

that the driver is really cheap.

After researching online, we settled on an IRF540N

Power MOSFET circuit (fig. 14). The metal–oxide–

semiconductor field-effect transistor led to a revolution

in electronics technology, being the first small transistor

that can be used for many digital applications.

Fig. 14 IRF540N Power MOSFET [6]

This power MOSFET supports a continuous drain

current of 33A at standard room temperature, dropping to

23A at 100 degrees Celsius. The datasheet convinced us

to use this component for the project. The proper circuit

schematic can be found in fig. 15. It includes a 1N4004

diode and a 10	
 Resistor. D05 represents the fifth

digital port on the Arduino board.

Fig. 15 IRF540N Circuit Diagram

To interface the motor with the Windows platform,

we will need some type of serial connectivity, as this

type is fully supported by the Arduino board. We settled

on two types of connectivity to let users in a future

project to choose: Bluetooth wireless communication and

USB wired communication. The Arduino board has an

integrated USB Type-B port, so all that remained was to

find a Bluetooth module. HC-05 Bluetooth modules are

widespread and very cheap [7]. They are also really easy

to program and need only 3 Volts (seller recommends

5V) to function. The integrated circuit can be found in

fig. 16.

Fig. 16 HC-05 Bluetooth IC

The Integrated Circuit has 5 pins: State, RXD, TXD,

GND, VCC, Key. For this study we will only need four

of them: Receive/Send (RXD, TXD) which will be

connected on the same ports on Arduino, but inversed

(RX Arduino port will connect to TXD and TX will

connect to RXD). This is how we managed to make it

work, but many other guides can be found online. The

full schematic can be drawn with Fritzing, an open-

source software used to make guides for electrical

assembly. It is really easy to use and design circuits and

it’s free. For ease-of-use, we have also connected a reset

switch on the circuit breadboard so that the reset button

present on the Arduino Uno microcontroller will not

have to be reached every time a new firmware is

uploaded. Figure 17 shows the whole diagram.

Fig. 17 Circuit Diagram created with Fritzing

5. DESIGNING THE SOFTWARE

As mentioned earlier, the software for driving the

DC-Motor will be compiled for Windows based PC’s,

but can be easily adapted to work on an Android/iOS-

based device with little modifications. The software that

will be run on the Arduino is written and compiled in

Arduino’s IDE.

Fig. 13 L298N DC-Motor driver [5]

Designing a Windows Program for Controlling DC-Motors Using Microsoft Visual Studio and Arduino IDE

JOURNAL OF INDUSTRIAL DESIGN AND ENGINEERING GRAPHICS

5.1 Arduino Software

We will start by telling the microcontroller what we

have connected to its ports, in this case Digital no.5.

From this pin a PWM-modulated signal will travel to the

MOSFET gate for adjusting the motor speed.

#define Motor 5

The next step is to define the RX, TX ports which

will start/stop the communication between the PC and

the microcontroller.

#define FORWARD 1
#define STOP 0

In the brackets of “void setup” every line of code

will be run only once after the Arduino is restarted.

void setup() {…}

Serial communication is measured in pulses/sec or

more commonly known as “baud rate”, in this case we

will set it to 9600.

Serial.begin(9600);

The last line in void setup should make the Arduino

understand that the fifth digital pin is used for output, not

input, so that the microcontroller can set the voltage

required to activate the MOSFET, when the user wants to

spin the motor.

 pinMode(Motor, OUTPUT);

This is the last line in void setup(). We can now

close the brackets.

Now, the Arduino has to wait for a start command

from serial communication for an infinite time, (or until

the user presses “stop” or disconnects DC power). Also,

once the motor has started, we have to state that it has to

run indefinitely. We also have to map values so that a

slider on the software interface can set the motor

spinning speed. Void loop () is the function that will run

indefinitely after the setup.

void loop() {…}

Inside this function we have to tell the Arduino not

to do anything until a signal from serial communication

is online. The easiest way to accomplish this is to use the

if() function. Inside the parenthesis we will write

“Serial.available()” which will tell the Arduino exactly

what is needed: “if serial is available, then”

If (Serial.available()) {…}

“Command” will be the variable that is read from

serial (from the PC). In this case:

Int Command = Serial.read();

To not risk overloading the serial buffer and get lags

or hang-ups, we will split the speed slider into 9 levels of

speed (removing 0rpm, reasons of redundancy).

Int Speed = Command%10;

The Arduino Digital PWM pin 5 will output to the

MOSFET values between 0 and 255 (in this case

between 28 and 255), which transforms to values

between 0 and 5 Volts, which the MOSFET can easily

interpret. Using the “map” function, we transform the

Speed variable that the PC is sending to the Arduino into

a PWM variable for the MOSFET to interpret. This will

optimize wireless serial communication.

Int PWM_Speed = map(Speed,1,9,28,255);

The last lines are comprised of a case loop, that will

make the Arduino understand when to start spinning the

motor and when to stop spinning it. For the case loop to

work, we need to initialize another variable, RUN in this

case.

Using the switch command, we will be able to set

two cases, one in which the motor is turned off, and one

in which the motor has the speed set by PWM_Speed.

The syntax requires a “break;” line after each case.

 int RUN;
 switch (RUN)
 {
 case STOP: analogWrite(Motor, 0);
 break;
 case FORWARD: analogWrite(Motor, PWM_Speed);
 break;
 }

After this, the program is compiled successfully,

and can be uploaded on the Arduino board. Now it’s time

to design and program the Windows Software.

5.2 Visual Studio Software

Fig. 18 DC-Motor Windows Application

After installing Visual Studio Community, we have

to create a new Windows Form. Then, a design can be

created using the Design Editor. The application UI

resembles an industrial machine control panel, for this

study, but it can be changed by dragging and dropping

new elements or just rearranging content on the window

Designing a Windows Program for Controlling DC-Motors Using Microsoft Visual Studio and Arduino IDE

VOLUME 14  ISSUE 2  DECEMBER 2019 34

by dragging the mouse. The application is present in fig.

18: By double-clicking on any present element, the IDE

enters the code editor, where element behavior can be

changed. For example, double clicking the UPB logo will

send to the following lines:

private void pictureBox2_Click(object sender, EventArgs e)

 {

System.Diagnostics.Process.Start(“http://www.upb.ro/”);

 }

This means that when the user clicks the UPB logo,

the computer will redirect him to the specified website.

To make the motor spin, the user has to specify the

port through which the computer communicates with

Arduino, we’ll take as an example COM1. The code is:

private void BLUETOOTHstartButton_Click(object sender,

EventArgs e)

 {

 if (serialPort.IsOpen)

 {

 serialPort.Write(STOP, 0, 1);

 serialPort.Close();

 BLUETOOTHstartButton.Text = “Start”;

 }

 else

 {

 serialPort.Open();

 serialPort.Write(FORWARD, 0, 1);

 BLUETOOTHstartButton.Text = “Stop”;

 }

 }

private void tBar_ValueChanged(object sender, EventArgs e)

 {

 SPEED_TMP = (byte)tBar.Value;

 FORWARD[0] = (byte)(SPEED_TMP);

 if (serialPort.IsOpen)

 {

 serialPort.Write(FORWARD, 0, 1);

 }

 labelSpeed.Text = “Revolutions per minute:

[rot/min]”;

 }

To explain this part of code: At first, when START

button is clicked, check if serial port is open. If it is open,

then show button as START and send “STOP” to

Arduino to keep the motor from spinning. Otherwise,

spin the motor by sending the chosen SPEED_TMP to

Arduino and show STOP on the button. SPEED_TMP is

the value of the dragging bar, which is sent to Arduino

while the Serial port is opened. So, if the port is open

(motor is spinning), send the chosen value on the bar (no.

3 at Fig. 18) to Arduino. The rotations per minute shown

on the bar represent the mapped values on the Arduino

code using the “map” function.

To show the available serial ports on the PC, a

simple function is used: “SerialPort.GetPortNames()” –
Gets an array of serial port names for the current

computer. If the user clicks the “?” next to the port

dropdown box, the following message is shown:

Fig. 19 COM PORTS Info

The correct port can be easily found after plugging

the Arduino with a USB cable to the PC, or successfully

pairing it via Bluetooth, accessing Device Manager and

checking Ports (COM & LPT).

6. CONCLUSIONS

This article presented an easy to program software

application to operate a DC-Motor in a cost-effective

way, using easy-to-use and open-source software, for

users with beginner’s programming skills. The Integrated

Development Environments used to design the platform

were Arduino IDE and Visual Studio Community Edition

in order to program an Arduino UNO R3 to send a digital

signal, on demand, to an IRF540N MOSFET, set by the

user using either USB Connection or Bluetooth to

communicate with the electronic assembly.

The purpose of this electronic assembly is for using

it as-is, by attaching a useful system on the DC-Motor’s

shaft, or for use in bigger projects, for a great variety of

purpose.

REFERENCES

[1] What is Arduino? Available at:

https://www.arduino.cc/en/guide/introduction,

Accessed: 2019-11-11.

[2] Arduino UNO R3, available at:

https://store.arduino.cc/arduino-uno-rev3, Accessed:

2019-10-10.

[3] C99 library support in Visual Studio 2013, available

at: https://devblogs.microsoft.com/cppblog/c99-

library-support-in-visual-studio-2013/ Accessed:

2019-11-18.

[4] 12VDC Reversible Metal Gear Head Motor,

available at: https://www.jameco.com/z/HN-GH12-

1632T-R-M-12VDC-Reversible-Metal-Gear-Head-

Motor-246mA_151442.html, Accessed: 2019-10-15.

[5] L298N dc and stepper motor driver, available at

https://www.aliexpress.com/w/wholesale-l298n.html,

Accessed: 2019-11-25.

[6] IRF540N MOSFET Datasheet, available at:

https://media.digikey.com/pdf/Data%20Sheets/Fairch

ild%20PDFs/IRF540N.pdf, Accessed: 2019-11-12.

[7] HC-05 Bluetooth modules, available at:

https://www.aliexpress.com/wholesale?SearchText=h

c+05, Accessed: 2019-11-10.

Authors:

Popescu Theodor-Andrei, Eng., University Politehnica

of Bucharest, E-mail:theodorandrei.popescu@yahoo.com

 Assistant prof. Ph.D student Eng. Ioana Teodora

COSTACHE, University Politehnica of Bucharest,

Department of Engineering Graphics and Industrial

Design, E-mail: teodora.cos94@yahoo.ro

