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Abstract: The paper presents the analysis of the elastic coupling with flexible elements, taking into 

consideration the mechanical strength criterion in conditions of normal loading or torsion overload, with 

and without misalignment, using finite element analysis, responding to multiple demands that are required 

in coupling structure. There are presented the basic principles for applying the finite elements method: the 

study of convergence at different mesh sizes, the loading scheme and boundary conditions for the flexible 

element. Also, the paper presents several simulations to prove the behaviour and functionality of the 

coupling for different operational scenarios: mechanical stress, buckling stability and modal analysis. 
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INTRODUCTION 

 

Considering the conventional methods of calculating 

the elastic couplings with metallic intermediate elements 

that introduce simplifying assumptions, it is necessary 

and appropriate to apply the finite element method to the 

design of these couplings. The Finite Element Method is 

an efficient calculation method that can be used in the 

current state of development of dimensional design and 

optimization of flexible elements, such as those in the 

elastic coupling structure with metallic membranes. The 

method also leads to cost and design time reduction, thus 

constituting a method of optimizing coupling design [1]. 

Finite element analysis is an integral part of structural 

analysis. For finite element analysis, the following steps 

must be taken: description of specific elements (element 

type, geometric constants, material); description of loads 

and boundary conditions; automatic generation of the 

finite element network; post - processing of results. 

Conceiving the finite elements, i.e. establishing their 

shape, specifying the number of nodes in which they are 

interconnected, and the nature of these links must be 

made in such a way as to ensure that the structure can be 

reconstituted as accurately as possible. 

The constructive solution adopted for the elastic 

coupling must be tested for its quality by theoretical 

simulations and practical experiments. Through 

simulation, an image of the behaviour and properties of 

the coupling is obtained before it can be manufactured 

and effectively used. 

 

2. SIMULATION AND EVALUATION OF STRESS 

AND STRAIN STATE 

 

2.1 Convergence study 

The dimensions of the finite elements and their 

number were chosen in such a way as to approximate as 

closely as possible the actual continuous structure, from 

the point of view of the geometrical shape, the way of 

applying the loads, the boundary conditions, the stiffness, 

and the masses. 

The set of boundary conditions must prevent the 

structure model from having rigid body movements or 

mechanism movements [5]. 

For modeling the model supports correctly and to 

avoid sources of errors in this modeling approach, the 

operating conditions of the flexible membrane and 

boundary conditions must be well known to best 

illustrate these situations. 

The efficiency of the finite element model depends on 

the quality of the meshing process. 

The meshed structure approximates geometrically 

and mechanically the actual structure. 

The approximation is better, the results more precise 

and the volume of information obtained higher, the 

higher the number of nodes, respectively the total 

number of degrees of geometric freedom of the structure. 

When developing the model, it was taken into 

account that the convergence process can be achieved in 

two ways: 

- The use of "higher order" elements, which have 

polynomials of approximation as high as possible. This 

implies that the finite element has a larger number of 

nodes, with more degrees of geometric freedom and a 

more complicated geometric shape. From a 

computational point of view, this type of element is 

more efficient because it processes a larger amount of 

information; 

- Making a finer meshing, i.e. the model has as many 

nodes and finite elements as possible (fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Meshing of membrane with SHELL elements  

with four nodes[1]. 
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The size and number of finite elements influence the 

convergence of the solution. Convergence to the exact 

solution was achieved by increasing the number of 

elements and modifying the type of finite element, even 

if the computational effort and implicitly the cost of the 

analysis increased when the number of elements 

increased. The results of the analysis, using four-node 

SHELL elements, are presented in table 1, which 

specifies the size of the finite element, numbers of nodes 

and number of elements, and the maximum equivalent 

stress and nodal displacements [1]. 

 

Table 1 
The results of the analysis with SHELL element QUAD4 

Side size 

[mm] 
4 3 2 1 0.7 0.5 

No. 

elements 
471 845 1474 4724 6768 18677 

No. 

nodes 
603 1019 1752 5249 7494 19742 

ech 

[N/mm2] 
63.2 71.3 75.3 87.1 89.2 96.2 

u sum 

[m] 
15.9 16.9 17.2 17.6 17.6 17.7 

 

In order to achieve convergence, it was taken into 

account that the model mesh network was as simple and 

uniform as possible. Switching from small items to large 

ones has been progressive. 

In order to ensure an increase in model efficiency, it 

is preferable that a (moderate) increase in the number of 

nodes and model elements is accompanied by a non-

uniform meshing, adapted to the configuration of the 

model’s stress state. 

It is necessary for the meshing to take into account 

the estimated configuration of the stress state of the 

structure and hence of the model, i.e. in areas with high 

gradients of the stress state the meshing is fine and in the 

other areas coarser. 

Around the concentrators (holes, connecting areas) 

the sides of the finite elements have kept the dimensional 

ratio close to the unit, but at the same time these sides 

have diminished from those of the elements in the areas 

further away from the concentrator. 

Considering the results with SHELL elements, with 

four nodes, in fig. 2 is illustrated, at increasingly fine 

meshing (i.e. having a greater number of nodes and 

elements), the convergence process of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Study of convergence at different mesh variants. 

It is noted that to a larger number of elements, the 

result approaches the exact solution, although excessive 

growth leads to a large amount of calculations. 

If 8-node SHELL elements are used, the meshed 

model contains 6395 elements, with 20655 nodes. The 

maximum equivalent stress, at a 5.4% meshing 

percentage error, is 95.8 N/mm2. 

Finer elements were used around the small holes and 

the short radius connections, and the location of the 

nodes was made in such a way as to ensure a uniformly 

spaced placement. 

Considering this situation on the convergence level, 

the mesh with SHELL elements with 4 nodes, with the 

side dimension of 0.7 mm, was adopted, at which the 

value of the maximum equivalent stress, compared to the 

version with elements having the side of 0.5 mm, differs 

with less than 10%. 

 

2.2 Description of the calculation model 

The central problem to be solved when studying the 

flexible membrane by the finite element method is to 

establish the boundary conditions, so that the calculated 

characteristic corresponds, with some approximation, to 

the real characteristic determined experimentally. After 

determining the limit conditions, one can study the 

influence of the disc geometry on its elastic characteristic 

and the stress analysis can be performed. 

For membrane study by FEM, finite elements of type 

SHELL were used. Due to geometric symmetry and load 

symmetry, only a 60° membrane sector can be studied. 

For calculation was considered OLC 65A steel with 

the following mechanical characteristics (STAS 795-92): 

- the longitudinal elastic modulus E = 2.06 ⋅ 105 N/mm2; 

- the cross-contractive coefficient  = 0.33; 

- admissible stress a = 320 ... 420 N/mm2; 

- r = 1000 N/mm2; c = 800 N/mm2. 

It is considered a blocked disk on the inner rivet 

layout circles and the tangential forces resulting from the 

application of torsional torque, acting at angular 

distances of 60°, on the screws circle, at the top of each 

spoke, in the connecting zone with the outer band of the 

membrane. The introduced restrictions therefore do not 

allow translations and rotations on the inner rivet 

arrangement circle. 

The loading was introduced as uniformly distributed 

normal pressure acting on the semi-cylindrical surfaces 

of the radius ds/2 in which are located the clamping 

screws of the elastic element with one of the semi-

coupling in the direction of actuation of the driving 

torque (analysis performed with the ANSYS program, on 

the model meshed with SHELL elements, QUAD4). 

The tangential force acting on each screw is 

expressed by the relationship: 
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where: h represents the thickness of the membrane; ds - 

the diameter of the screw rod. Result: 
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
                                    (2) 

 

The loading scheme and boundary conditions for the 

elastic element are shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Loading scheme of the elastic element. 

 

In the nodes on the central part of the membrane, 

located on the outline of the inner holes, the 

displacements are null. All outer holes (including them 

serving for membranes packing) are blocked as 

displacement on the direction of the membrane axis. On 

the inner assembling holes, all the degrees of freedom 

(translation and rotation) are fixed in this portion. 

 

2.3 Analysis of stress and strain state in the elastic 

membrane 

The results of the meshing are shown in table 2. 

 

Table 2 
The results of the meshing of the structure 

Element type No. elements No. nodes 

SHELL 6768 7494 

 

For equivalent stresses, the results of the finite 

element analysis were presented in the form of different 

colored areas (color distribution), in fig. 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Equivalent stress distribution, at Δa = 0, 

without considering centrifugal loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Equivalent stress, taking into account the centrifugal 

loading, at Δa = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Equivalent stress at axial deviation, Δa = 0.6 mm. 

 

One would see that the maximum stress appears at 

the radius corresponding to filleted root of the spokes. 

The maximum values of the equivalent stresses 

(calculated by the von Misses criterion) and the resulting 

displacement are shown in table 3. 

 

Table 3 
The values of the equivalent stresses  

and the resulting displacement, at a = 0 

Element 

type 

Equivalent 

stress 

without 

centrifugal 

loading 

[N/mm2] 

Equivalent 

stress 

with 

centrifugal 

loading 

[N/mm2] 

Resulting 

displacement

[m] 

SHELL 87.1 89.2 17.6 

 

Centrifugal loading, due to the rotational speed (n = 

4500 rpm), changes the maximum equivalent stress value 

from 87.1 N/mm2 to 89.2 N/mm2. 

In figures 7 - 8 are shown the resulting deformation in 

the two situations: a = 0 and a = 0.6 mm. 

Using the stress distribution of figures 5 and 6, it is 

possible to represent the variation diagram of the 

equivalent stress in relation to the radius of the spoke, in 

the direction of the spoke axis and its margin, for the two 

cases of presenting an axial deviation, as illustrated in 

figures 9 and 10. 
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Fig. 7 Resulting displacement without axial misalignment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Displacement with axial misalignment, Δa = 0.6 mm. 

 

The graphs show that the equivalent stress reaches a 

maximum value on both the axis of the spoke and its 

edge at approximately equal radii, in the spoke 

connection zone with the center ring of the disc. 

In the case of an axial misalignment a = 0.6 mm, the 

following values for stresses and deformations were 

obtained: 

- resultant displacement urez ax = 0.6002 mm; 

- the maximum stress at the base of the spokes ech ax = 

272.3 N/mm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Variation of the equivalent stresses versus the radius  

for the case a = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 Equivalent stresses versus the radius  

for 0.6 mm axial deviation. 

 

2.4 Checking at stress solicitation 

The safety factor can be calculated with the general 

expression [1], [2]: 

 

maxeq

2.0c



                                      (4) 

 

where 2.0  represent the yield point of the material. The 

steel used in calculus is OLC 65A, having 

2.0 =800 2mm/N . The admissible safety factor 

indicated in literature [3] for pieces subjected at fatigue is 

3...5.1ca  . The values of safety factor for the two cases 

of stress analysis and the discussion regarding the 

checking at stress solicitation are shown in table 4. 

 

Table 4 
The values of safety factors in two situations: 

a = 0 and a = 0.6 mm 

Size 
Analysis case 

a = 0 a = 0.6 mm 

 2
maxeq mm/N  89.2 272 

Safety factor, c 8.97 2.94 

Checking discussion acc   acc   

 

The resulting strain and stresses 1 and 3, as well as 

the equivalent stress for the two situations: without axial 

deviation (a = 0) and in the presence of axial deviation 

(a = 0.6 mm), are presented as values in table 5. 

 

Table 5 
Resulting strain and stress values 

 usum 

[mm] 
1 max 

[N/mm2] 

3 min 

[N/mm2] 

ech 

[N/mm2] 

a = 0 0.0176 912 - 86.3 89.2 

a = 0.6 

mm 
0.601 305 - 272 

 

One would see that the introduction of axial 

misalignment (a=0.6 mm) increases almost three times 

the principal stress 1 and the maximal equivalent stress 

given the situation without axial deviation. 
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3. SIMULATION OF TORSIONAL BUCKLING 

BEHAVIOUR 

 

For linear (or eigenvalue) buckling analysis, the 

ANSYS program determines the scaling factors for the 

stress stiffness matrix. This formulation takes into 

account that the deflections are not large. The buckling 

load factor is generally a safety factor, defined as [1], [2]: 

 

loadApplied

loadbucklingLimit
c                              (5) 

 

The figure 11 illustrates the first buckling shape 

where the buckling load factor, c, is noted FREQ in the 

image of this figure. 

The buckling load factors for 10 shape modes has 

values in the interval c[9.455, 12.82], being greater 

than the ones admissible conforming to Niemann, 

ac =3…5. This demonstrates that the membrane is stable 

at buckling. 

For a more comprehensive evaluation, the buckling 

analysis was made considering the influence of 

centrifugal loading due to the rotational speed, this 

situation determining a low increasing of the buckling 

safety factor with a percentage between 6% and 9%, by a 

specific stiffness effect [2]. With inertial loading, the 

values of buckling load factors are in the interval 

c[10.329, 13.71]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 First buckling shape for the case a = 0. 

 

4. SIMULATION OF TORSIONAL VIBRATION 

BEHAVIOUR 

 

Torsional vibration behaviour was simulated by FEM 

using SHELL type elements with 4 nodes. For 

calculation was considered the following parameters 

taken from specialized literature: torque of 50 Nm, 

rotation speed of 4500 rpm, thickness h=0.3 mm, 

modulus of elasticity E=2.06·105 N/mm2, density ρ=7800 

kg/m3, Poisson’s coefficient ν=0.33 and shear modulus 

G=8·104 N/mm2. 

The values obtained by modal analysis did not take 

into account inertial discontinuities. The proper 

frequencies and the corresponding modes shape 

vibrations have been determined for two cases of modal 

analysis: without blockages on the outer holes and with 

restrictions on these holes (all the nodes are blocked so 

that the degree of freedom of rotation and translation are 

eliminated). The proper frequencies for these two cases 

of modal analysis are indicated in table 6 [1], [4]. 

The natural frequencies for 10 vibration modes have 

values in the interval  2556,2067f . This means that the 

membrane is stable at vibrations. 

In the figures 12-15 are shown only three modes 

shape vibrations for these two situations. 

 

Table 6 
Results obtained by modal analysis 

Vibration 

mode 

Without 

blockages 

on the outer holes 

With blockages 

on the outer holes 

1 157.5 2067 

2 157.5 2087 

3 157.6 2087 

4 198 2139 

5 198 2139 

6 308 2176 

7 373 2534.5 

8 575 2541 

9 575 2541 

10 879 2556 

 

 
 

 
 

Fig. 12 The first three modal shapes of vibrations  

without blockages on the outer holes. 

 

Due to symmetry, the first and second modes have 

similar shapes, which were obtained at approximately the 

same frequency, vibrations taking place around two 

perpendicular axes. The loading torque changes 

insignificantly their elastic membrane vibration 

frequencies [1], [4]. 

The input parameters of a membrane that are subject 

to change are geometric parameters such as fillet radius 
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or spokes' width but may be also loads locations or 

constraints location, thereby reducing dynamic 

solicitation and extending coupling life. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 The first modal shape of vibration  

with restrictions on the outer holes. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14 The second modal shape of vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 The third modal shape of vibration. 

 

The results of the evaluation are used to increase 

efficiency and feasibility of the membrane design. 

 

 

5. CONCLUSIONS 

 

In relation to the theoretical aspects, the following 

conclusions can be drawn: 

- The conventional methods of calculating the elastic 

couplings with metallic intermediate elements are 

based on simplifying assumptions, so that it is 

necessary and appropriate to apply the finite element 

method to analyze the coupling structure; 

- Finite element method (FEM) is the only calculation 

method that can be used in the current state of 

development of conceptual design and optimization of 

elastic elements from the structure of flexible 

membrane couplings; the method leads, in addition, to 

reducing costs and design time, thus constituting a 

method of optimizing coupling design; 

- The calculation method used allows geometric changes 

to be made so that the influence of the geometry of the 

disc on its characteristics can be studied and the stress 

analysis can be obtained; 

- The analysis of strain and stress state of the metallic 

disc is necessary to determine the maximum stress area 

in the disc spokes; 

- The equivalent stress calculated with the von Misses 

criterion has the maximum value at the base of the 

spokes in their connection zones with the central 

portion of the membranes; 

- Increase of the connection radii in these areas result in 

the decrease of the stresses of the concentrators, 

together with the widening of the loading area; 

- Increasing the rotation speed of the disc also leads to 

the decrease of tensile and compression stresses due to 

the stiffening effect in the radial direction produced on 

the flexible membrane; 

- The introduction of axial misalignments along the axis 

of the discs leads to significant stresses in the same 

areas, resulting in bending and tensile stresses due to 

the increase in the distance between the ends of the 

spokes; it is therefore necessary to introduce bending 

radii in the fastening areas for the parts with which the 

membranes are assembled. 

- Product simulation certifies that the coupling works as 

expected. The simulation results should then be 

validated by practical experiments on closed or open 

power circuit stands to verify the compliance of the 

operating principle with the assumptions made in the 

analysis process. 
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